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Abstract In a recent publication, we presented a new

strategy for engineering design and optimization, which we

termed formulation space exploration. The formulation

space for an optimization problem is the union of all var-

iable and design objective spaces identified by the designer

as being valid and pragmatic problem formulations. By

extending a computational search into this new space, the

solution to any optimization problem is no longer prede-

fined by the optimization problem formulation. This

method allows a designer to both diverge the design space

during conceptual design and converge onto a solution as

more information about the design objectives and con-

straints becomes available. Additionally, we introduced a

new way to formulate multiobjective optimization prob-

lems, allowing the designer to change and update design

objectives, constraints, and variables in a simple, fluid

manner that promotes exploration. In this paper, we

investigate three usage scenarios where formulation space

exploration can be utilized in the early stages of design

when it is possible to make the greatest contributions to

development projects. Specifically, we look at formulation

space boundary exploration, Pareto frontier generation for

multiple concepts in the formulation space, and a new way

to perform targeted boundary expansion. The benefits of

these methods are illustrated with the conceptual design of

an impact driver.

Keywords Multiobjective optimization � Pareto

frontier � Design space exploration � Dynamic

formulation

List of symbols

g Vector of inequality constraints

h Vector of equality constraints

p Vector of fixed design parameters

v Vector of interest in the objective space

w Diagonal matrix of objective weights

x Vector of design variables or design objects

y Vector of independent design objects

z Vector of dependent design objects

l Vector of design objectives

c Vector in the objective space

Subscripts and superscripts

[]i Dummy index

[]j Dummy index

[]q Dummy index

[]l Lower bound

[]u Upper bound

[](-) Lower bound in targeted boundary expansion

[](?) Upper bound in targeted boundary expansion

[](0) Benchmark

[](k) Concept or formulation

½ � Formulation space

1 Introduction

Success in engineering design is closely tied to a designer’s

ability to make rational, informed decisions throughout the

product development process. Decisions that typically have

the largest impact on a design’s outcome occur during early

conceptual design, when the least is known about design

objectives or constraints (Homan and Thornton 1998; Ishii

1995; Mattson and Messac 2002; Wang 2001). While many

ad hoc, heuristic methods (Mulet and Vidal 2008; Olewnik
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and Lewis 2003; Pahl et al. 2007; Pugh 1996; Ulrich and

Eppinger 2004) exist to support conceptual design decision-

making, computational search methods are rarely utilized

until the later, detailed design stages. Thus, to a large extent,

the valuable information that is provided through computa-

tional search (i.e., algorithmic optimization) is only available

when its impact is the least. Several researchers have pushed to

capitalize on the benefits of using computational methods and

optimization techniques earlier in the design process (An-

tonsson and Cagan 2001; Barnum and Mattson 2010; Cagan

et al. 2005; Chakrabarti 2002; Dye et al. 2007; Hassan and

Crossley 2002; Kurtoglu and Campbell 2009; Lewis et al.

2011; Mattson et al. 2009; Morino et al. 2006; Qazi and

Linshu 2005; Shelley et al. 2007). Despite these advances,

there are still challenges that currently limit the extent to

which designers can use computational search methods to

assist in early-stage design decision-making.

One challenge is that much of early-stage, conceptual

design is qualitative in nature. Designers use sketches and

rough prototypes to explore concept ideas; very little

quantitative modeling takes place. To help bridge this gap,

some have used sketch recognition software to transform

hand-drawn sketches into parametric, computational mod-

els (Alvarado and Davis 2007; Davis 2007; Landay and

Myers 2001; LaViola 2011; Masry et al. 2005; Zeleznik

et al. 2008). With regards to optimization, methods such as

interactive genetic algorithms (Brintrup et al. 2007;

Brintrup et al. 2008; Gong and Yuan 2011; Takagi 2001)

or fuzzy logic systems (Huber et al. 2008; Oduguwa et al.

2007) can help to resolve design conflicts involving qual-

itative design objectives. We note that when analytical

models do exist, they do not necessarily need to be high

fidelity to be useful during conceptual design; in fact,

computationally inexpensive models are advantageous

because they allow the designer to quickly explore a large

design space (Kuehmann and Olson 2009). Metamodeling

techniques have been widely used to obtain adequate

analytical models for use during conceptual design explo-

ration and optimization (Wang and Shan 2007). Therefore,

for the purposes of this paper, we will assume that

designers have access to preliminary analytical models for

use in a computational search during conceptual design.

Another challenge that hinders the use of computational

search during conceptual design is the designer’s lack of

knowledge about the design problem itself. The designer

may still be learning about the true needs and limitations of

the design project—two critical elements of numerical

optimization (Wang and Shan 2007). Traditionally, a

designer must define objectives, constraints, and limits

before executing an optimization algorithm. However, the

results of the search will be less useful to the designer if the

problem is not formulated properly to reflect his or her true

preferences, which is often the case (Balling 1999; Stump

et al. 2009). In recent years, a number of dynamic multi-

objective optimization techniques have been developed for

handling models that change over time (Guan et al. 2005;

Tantar et al. 2011; Farina et al. 2004). These optimization

algorithms are equipped to treat models as time-dependent

scenarios, rather than static snapshots. However, lacking

attention in the literature is a method for creating a dynamic

multiobjective formulationan optimization framework that

easily changes over time to reflect changes not due to fluctu-

ating operating conditions, but rather due to a designer’s

evolving needs and preferences as new design needs and

objectives arise throughout the design process. In other words,

a dynamic multiobjective optimization formulation is nee-

ded—one that allows for easily modified problem formula-

tions and does not confine the search to the space defined by

the initial parameterization (Agte et al. 2010).

In a previous paper (Curtis et al. 2013), the authors pre-

sented a dynamic optimization problem formulation, which

allows the designer to explore a new space termed the for-

mulation space. The formulation space is the union of all

variable and design objective spaces identified by the designer

as being valid and pragmatic problem formulations. By

extending the search into this new space, the solution to an

optimization problem is no longer predefined by the problem

formulation. For many practical problems, this predefinition is

not a drawback, since numerical optimization is employed to

simply carry out the routine computations so that the designer

does not have to. For other design problems, not of this nature,

the designer is genuinely interested in exploring the design

options without having to have formed a concrete under-

standing of the problem or definition of the formulation. In

such cases, which are abundant in early design, formulation

space exploration enables the designer to search computa-

tionally in both a divergent and convergent manner.

In this paper, we explore how a dynamic optimization

problem formulation, and more specifically formulation space

exploration, can be used to obtain valuable information during

conceptual design. We provide three scenarios for its use: (1)

formulation space boundary generation and exploration, (2)

Pareto frontier generation for multiple concepts in design

concept selection, and (3) targeted boundary expansion. Our

goal in presenting these usage scenarios is not to highlight the

novelty of these particular scenarios, but rather to demonstrate

how exploring the formulation space using a dynamic multi-

objective optimization formulation can provide the designer

with valuable information in a variety of activities in early-

stage design.

The remainder of this paper is organized as follows: We

begin in Sect. 2 with technical preliminaries where we

present and discuss the standard multiobjective optimiza-

tion problem formulation, followed by a dynamic multi-

objective optimization problem formulation. Then, in Sect. 3,

we discuss three uses for the dynamic optimization
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problem formulation in conceptual design. In Sect. 4, we

provide evidence of the benefits of formulation space

exploration with a case study involving the conceptual

design of an impact driver. Finally, in Sect. 5, we offer

concluding remarks.

2 Technical preliminaries

In this section, we present the standard multiobjective

optimization formulation. Also, we briefly summarize the

developments of Curtis et al. (2013) by presenting a

dynamic multiobjective optimization formulation.

2.1 Standard multiobjective optimization formulation

The generic, deterministic multiobjective optimization

problem is formulated as Problem 1 (P1):

min
x
fl1ðx; pÞ; l2ðx; pÞ; . . .; lnðx; pÞg ðn� 2Þ ð1Þ

subject to inequality constraints gqðx; pÞ� 0 fq ¼ 1; 2; . . .;
ngg; equality constraints hjðx; pÞ ¼ 0 fj ¼ 1; 2; . . .; nhg;
and side constraints xl;i� xi� xu;i fi ¼ 1; . . .; nxg: The

vector x represents a set of design variables, and p contains

a set of fixed design parameters. In other words, we min-

imize a set of objective functions, l, by finding the optimal

values for the design variables in x that satisfy all design

constraints. The objectives, equality constraints, and

inequality constraints may be linear or nonlinear functions

of x and p.

When design objectives are competing, P1 produces a

set of optimal solutions called the Pareto frontier. This is

shown graphically in Fig. 1, where the feasible design

objective space for two minimized objectives (l1 and l2) is

plotted. In the figure, any point residing on or in the shaded

region represents a feasible design solution, meaning that

the inequality, equality, and side constraints for the design

are satisfied. Each solution comprising the frontier (shown

as the bolded curve in Fig. 1) is said to be Pareto optimal.

Pareto optimality indicates that there are no other designs

for which all objectives are improved. In other words, the

Pareto frontier is the set of all nondominated solutions for a

particular problem. In multiobjective optimization,

designers generally seek Pareto solutions because they

indicate that the objectives cannot be improved any more

without reducing the performance of other objectives in

exchange (Miettinen 1999).

2.2 Dynamic multiobjective optimization formulation

In Sect. 1, we briefly mentioned the idea of formulation

space exploration—this is depicted graphically in Fig. 2. In

Fig. 2a, we plot the design objective space for two objec-

tives (l1 and l2), similar to what was done in Fig. 1. In

Fig. 2(b), we plot a different design objective space shown

as the shaded region, which came from adjusting the

optimization problem formulation (e.g., the constraints

and/or limits changed). The design space from the previous

formulation is represented by the region enclosed by the

dashed lines. In Fig. 2c, we plot the design space for one

more problem formulation, which resulted in the smaller

shaded design space. Again, the previous design spaces are

represented with the dashed lines. The aggregate of these

spaces, shown in Fig. 2d, is the formulation space. It is

clear from the plots that formulation space exploration is

divergent in nature, allowing the designer to form the

solution as the search progresses. Notice that we have

underlined the objectives in this final plot to signify that

this is the formulation space.

For the purposes of illustration, we have limited the

graphs in Fig. 2 to two-dimensional space; however, for-

mulation space exploration is free to expand into

n-dimensional space. In fact, the formulation space will

continuously evolve as the designer modifies objectives

and variables or as design models are updated. This

evolving formulation space can be viewed as belonging to

a single problem; however, because the final step of for-

mulation space exploration is generally the selection of a

single formulation (and corresponding design space) to

pursue further, each unique formulation is labeled to dif-

ferentiate it from other design spaces for when the time

comes to make that selection. By analyzing the gains and

tradeoffs of each newly discovered space, the designer is

able to use previous formulations to guide his or her search

further for the formulation that will best meet his or her

design needs.

Unlike many other design optimization methods, the

purpose of formulation space exploration is to lead the

designer to a desired formulation, rather than a desired

solution. This is because, as has been previously men-

tioned, the designer does not always know at this point in

Feasible 
Design 

Objective 
Space

Pareto 
Frontier

µ1

µ2

Fig. 1 Feasible design objective space is shown shaded and the

Pareto frontier is shown as the bolded curve
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the design process all objectives, constraints, and variables

for the problem in question. Furthermore, under our stated

assumption that relatively inexpensive models are being

used, it is understood that more detailed models will be

used later on to reach a final solution. Importantly, the

human designer is integral to this exploration process and

acts as the rational decision-maker while using the com-

puter to execute mundane calculations. In other words,

formulation space exploration requires the designer to

remain in the loop, and the designer benefits from the

added computational assistance.

It is beneficial to briefly compare and contrast this

approach for design space exploration to other methods.

There are many existing approaches for systematically

exploring a defined design space. An excellent example of

this is the approach called innovization, which finds a set of

optimal solutions for a problem and examines their com-

monalities to expose useful and innovative underlying

design principles (Deb and Gupta 2006). However, the

nature of the formulation space is such that each problem

contains a potentially infinite number of possible design

spaces. Because any number of design objects can be

added, deleted, or changed during the exploration process,

there are no defined boundaries within which an algorithm

can search to systematically extract information. Instead,

formulation space exploration depends on the designer’s

intuition, keeping him or her in the design loop, as has been

mentioned. Instead of searching the infinite space by

computer, the user undergoes an intuitive exploration

process with computational assistance to improve the

efficiency of the search.

Another related method is the multicriteria multisce-

nario optimization approach (Wiecek et al. 2009). In this

approach, the Pareto frontiers of multiple formulations for

multiobjective optimization problems are identified and

compared with common solutions. A less involved

approach is often performed in structural analysis for

multiple load cases, wherein an aggregate objective func-

tion is formed to arrive at a solution that has been identified

to perform satisfactorily for all cases. The primary differ-

ence between the method proposed in this paper and these

other methods is that they have a number of predefined

scenarios or formulations for which they are seeking a

single satisfactory solution. Formulation space exploration

is meant for a different setting—one in which the user is

exploring various design spaces (typically not belonging to

a predefined set) in order to select a single formulation that

can then be used in a detailed design setting to optimize for

the solution that best satisfies that single scenario.

Formulation space exploration is a dynamic process:

design variables, parameters, constraints, and objectives

change as a designer formulates and reformulates an opti-

mization problem. For example, a design variable in one

formulation may be implemented as fixed design parameter

in the next, and as an objective in subsequent formulations.

Therefore, to preserve clarity and to emphasize the fluid

nature of formulation space exploration, we will refer to all

optimization components—design variables, parameters,

constraints, and objectives—as design objects. The

behavior of each design object is dictated by how it is

implemented in the generic dynamic multiobjective opti-

mization problem, given as Problem 2 (P2):

min
y

l1ðxÞ; l2ðxÞ; . . .; lnx
ðxÞ

� �
ðnx� 2Þ ð2Þ

subject to the side constraints

yl;i� yi� yu;i fi ¼ 1; . . .; nyg ð3Þ

zl;i� zi� zu;i fi ¼ 1; . . .; nzg ð4Þ

where

l ¼ w � x ð5Þ

w ¼
w1;1 . . . 0

..

. . .
. ..

.

0 . . . wnx;nx

2

64

3

75 ð6Þ

x ¼ y1; y2; . . .; yny
; zðyÞ1; zðyÞ2; . . .; zðyÞnz

h iT

ð7Þ

where y is a vector of independent design objects, z is a

vector of dependent design objects, x is a concatenated

µ1

µ2

µ1

µ2

µ1

µ2

µ1

µ2

Feasible 
Formulation 

Objective 
Space

(b)(a)

(d)(c)

Fig. 2 a A traditional design objective space. b A different design

objective space, obtained by reformulating the optimization, shown as

the shaded region and overlaid on the design space from the previous

plot. c A third design space obtained by manipulating the optimiza-

tion problem formulation. d The formulation objective space
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vector of all the design objects in y and z, and w is a

diagonal matrix where each element along the diagonal is a

member of the set {-1, 0, 1}. The number of total design

objects, independent design objects, and dependent design

objects is denoted nx, ny, nz, respectively.

Again, the behavior of each design object in x is

determined by the implementation of P2. If in Eq. (3),

y{l, i = y{u,i , then yi (which is also xi) is a fixed design

parameter. Otherwise, if yl,i = yu,i, then yi is a design

variable. Likewise, if in Eq. (4), zl,i = zu,i, then zi (which is

also xiþny
) is an equality constraint. And when zl,i = zu,i, zi

is an inequality constraint. If the lower or upper bound on zi

is to be ignored, then the value of zl,i or zu,i is set to -?
or ?. Objectives are dictated by w when wi,i = 0, xi is not

a design objective. When wi,i = 1, xi is an objective to be

minimized; when wi,i = - 1, xi is to be maximized. In

this manner, design objects can easily transform and mutate

as the designer explores the formulation space.

Admittedly, formulation space exploration is possible

with P1 or P2; in fact, both will yield the same Pareto

frontier. However, it has been shown that P2 requires fewer

lines of code to be manipulated after it has been formu-

lated, while requiring roughly the same number of lines of

code to initially formulate (Curtis et al. 2013). For exam-

ple, objectives are turned on and off by simply changing

the scalar values in the diagonal of w—no additional pro-

gramming is necessary. The same is true when changing a

design parameter into a design variable—only the limit

values in y and yl need to be changed. This reduction in

effort to reformulate optimization problems is important

for effective formulation space exploration. Designers must

be willing to ask ‘‘what if’’ questions and explore tradeoffs,

and this is less likely to occur if the cost of reformulation is

perceived to be high. Similar trends have been reported in

CAD modeling—designers are less willing to modify CAD

models if significant effort is required (Robertson and

Radcliffe, 2009). The more natural an engineering design

tool or process is, the more likely it will be generally

accepted (Lopez-Mesa and Bylund 2011). For the full

development of P2, including computational limitations,

we refer the reader to Curtis et al. (2013).

3 Usage scenarios for formulation space exploration

in conceptual design

In this section, we present three scenarios for performing

formulation space exploration using the dynamic optimi-

zation problem formulation presented above. All three

scenarios are encountered during conceptual design after at

least one design concept has been developed. To avoid

confusion, we will adopt the definition of a design concept

from Mattson and Messac (2003), where a concept is

defined as an idea that has evolved to the point that there is

a parametric model that represents the performance of the

family of design alternatives that belong to that concept’s

definition. The applicability of each scenario is governed

by the amount of information a designer truly knows at that

point in the design process. In Sect. 3.1, we look at a

situation where the designer knows little about the design

objectives and is more interested in divergently exploring

the formulation space as a whole rather than any particular

Pareto frontier. In Sect. 3.2, we discuss a scenario where

the designer has solidified the objectives of the project and

is ready to converge on a particular concept. And in Sect.

3.3, we investigate how to divergently explore regions of

infeasibility, with the intent of learning more about the

design, its tradeoffs, and potential future design possibili-

ties. Because the design process ideally consists of a

number of iterations of convergence and divergence, there

is no single right way for applying these scenarios or other

design activities during exploration. It should be noted that

solving a multiobjective optimization problem repeatedly

can easily become a time-consuming process. Thus, we

reiterate that formulation space exploration is most feasible

and useful in applications where the designer has access to

relatively computationally inexpensive analytical models

with which to work. Such models are often available in

early-stage design activities. As a drawback, these models

are also generally the least accurate.

3.1 Scenario 1: Formulation space boundary

exploration

One scenario where the dynamic formulation allows the

engineer to explore and learn more about a product’s

design space is through formulation space boundary

exploration. If design objectives and preferences are truly

unknown, which is often the case in early design, then

finding an s-Pareto frontier for a set of concepts is less

meaningful than finding the boundaries of the formulation

space, which represent the extreme values of the formu-

lation space with respect to any combination of objectives

being maximized or minimized. In other words, under-

standing the full objective space can be useful in some

design scenarios. For example, when designing an auto-

mobile, there are many potential design objectives: power,

fuel efficiency, size, maximum speed, acceleration, etc.

Depending on the design purpose, different regions of the

objective space may be more desirable than others. Sup-

pose we have a new composite material that can be

implemented in a vehicle. In the highly coupled system of

an automobile, the design implications of this composite

material may be unknown. Thus, we may desire to explore

the formulation space using a basic automobile model to

see if the technology is better suited for the high
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performance vehicle market, where power is maximized

and size is less desirable, or in the minivan market, where

fuel efficiency and size are to be maximized. The overall

shape and size of the formulation space boundaries may

also suggest the confidence that the designer can have in

the ability of a certain design to achieve particular speci-

fications in practice. However, if investigation of the

robustness of a model is the designers primary objective,

the authors suggest a more thoroughly examined approach,

such as those presented in (Barrico and Antunes 2006; Deb

and Gupta 2006).

Formulation space boundary exploration is fully possi-

ble with either P1 or P2; however, we will only explicitly

present this procedure with P2. Recall that in P2, objec-

tives are controlled by the values along the diagonal in

w. For a two-dimensional problem of a single optimization

formulation, such as the one seen in Fig. 3, it is possible to

obtain the boundary of the design objective space using

four different w matrices in P2 and the normal boundary

intersection method or a modified normal constraint

method (Das and Dennis 1998; Messac et al. 2003). For

example, in w(1) in the figure, both objectives are mini-

mized (i.e., the elements of wi,i corresponding to li for

both objectives are equal to 1); this results in an optimi-

zation problem that produces the lower left boundary of the

design space. The three remaining boundaries can be

obtained by toggling the requisite values in w between 1

and -1, as shown in Eq. (8). A similar process can be used

to find the boundaries of the formulation space. As shown

by this example, exploring the various combinations of

minimized and maximized objectives for a particular

problem is easily performed using a dynamic multiobjec-

tive optimization formulation. This is because between

each formulation, only the values in the w-matrix require

changing, according to the full factorial matrix f. To per-

form these same calculations using the standard multiob-

jective optimization formulation would require greater

effort to reformulate and therefore decrease the likelihood

of such exploration taking place.

The general process for finding the boundaries of the

formulation space is shown in Fig. 4. First, the designer

chooses the design objects of interest from the vector x, the

total number of which is nd, and stores the indices that

correspond to x in a vector, d. Second, the designer gen-

erates a 2nd two-level, full factorial matrix f in standard

form. For example, if nd = 2, the following matrix would

be displayed.

f ¼

�1 �1

1 �1

�1 1

1 1

2

664

3

775 ð8Þ

Next, P2 is executed 2nd times in a loop. For every iteration

in the loop, wðiÞ is generated by setting wl,l to the ith row

and the mth column of f, where l is the mth entry in d: For

every loop, the solution is added to the set S and i is

incremented. Once i is greater than 2nd ; the process is

repeated for any remaining concepts or formulations, the

total number of which is nk. The result is a set of designs

outlining the extreme boundaries of the formulation space

for the given concepts and/or formulations. A limitation of

this scenario is that it may not identify the complete for-

mulation space boundary when the shape of the space has

certain unique features. These features include concavities

that are nonmonotonic with respect to at least one axis,

discontinuities inside the space, or disjointed spaces, as

shown in Fig. 5. However, because the predominant pur-

pose of boundary exploration is to simply gain an overall

basic understanding of achievable values in various

objectives, this limitation does not significantly decrease

the utility of this scenario for most cases.

3.2 Scenario 2: s-Pareto generation for multiple

formulations

Perhaps the most obvious use for an optimization problem

is to converge to an optimal solution. In this section, we

combine the dynamic multiobjective optimization

approach with an s-Pareto generation and selection strategy

presented by Mattson and Messac (2003). Consider the

two-formulation spaces shown in Fig. 6. An s-Pareto

frontier is defined as the Pareto optimal solutions for a set

of concepts. In this case, however, we have shown an

s-Pareto frontier in a formulation space, because it contains

the Pareto optimal solutions for the set of all formulations

and concepts. This is evident in the figure because the

bolded line, representing the s-Pareto frontier, spans mul-

tiple concepts and formulations. With the s-Pareto frontier

defined, concept selection can proceed with a qualitative or

µ1

µ2

w(1) w(2)

w(3) w(4)

Fig. 3 The results of four different optimization formulations are

overlaid on the design objective space
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quantitative analysis of concept goodness as described by

Mattson and Messac (2005).

The optimization problem given by P2 (Eqs. 2–7)

needs to be modified to account for multiple concepts.

The generic, dynamic multiobjective optimization prob-

lem capable of comparing multiple concepts is given by

Problem 3 (P3):

min
k

min
yðkÞ

lðkÞ1 ðxðkÞÞ;l
ðkÞ
2 ðxðkÞÞ; . . .;ln

ðkÞ
x
ðxðkÞÞ

n o� �
ðnðkÞx �2Þ

ð9Þ

where the superscript [](k) indicates that [] is associated

with formulation or concept k. Equations (3–7) from P2 are

still valid here for P3, although each equation will be

specific to the formulation or concept k. Solving P3 results

in an s-Pareto frontier—one that potentially spans multiple

formulations and concepts. Note that while it is generally

easier to explore the formulation space of each concept

using the dynamic optimization problem rather than the

standard optimization problem (see Sect. 2.2), it is not

necessarily easier to compare different concepts, since the

same initial coding effort is required for each concept

model.

The objectives minimized in P3 are set objectives,

meaning that they are comparable across all formulations

and concepts. The inputs to the concept models that gen-

erate set objectives may be unique. For example, the

required variable inputs needed to calculate the mass of a

bevel gear and a spur gear may be different; yet, the mass

of the two types of gears is comparable. Additionally, it is

possible for a formulation or concept to have one or more

objectives that are specific to the formulation or concept.

To illustrate, consider a design concept that contains a

hazardous material. It may be necessary to maximize the

safety of this concept, whereas other design concepts

generated may not contain the hazardous material, obvi-

ating the need to maximize safety. These formulation and

concept specific objectives are easily included as con-

straints in x. More information on how to handle formu-

lation or concept specific objectives can be found in

Mattson and Messac (2003).

3.3 Scenario 3: Targeted Boundary Expansion

A third scenario for using the dynamic optimization

problem formulation is to perform design feasibility

Choose d and nd

N

Y
i < 2nd ? 

Generate full 2nd factorial 
matrix in standard form

i = 1; j = 1 

Generate w(i)

Solve P2; Store Solution in S 

i = i + 1

N

Y
j < nk ? j = j + 1; i = 1

End 

Fig. 4 Flow chart for determining the boundaries of a formulation

space using the dynamic optimization formulation

µ1

µ2

a
b

c

Fig. 5 A formulation space exhibiting features that may not be

recognized by formulation space boundary exploration: a Nonmonotic

concavity, b discontinuity inside the space, c disjointed space

µ1

µ2

Fig. 6 Design objective formulation spaces for two concepts are

shown. The resulting s-Pareto frontier is outlined in bold and spans

both concepts and multiple formulations
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studies, or targeted boundary expansion. Consider the

feasible design space shown as the dark-shaded region in

Fig. 7. If the designer wants to see designs near the black

circle, he or she could easily run an optimization (using P1

or P2) that minimizes the Euclidean distance to that point

in the design objective space (Stump et al. 2009). How-

ever, if the designer would like to see designs near the

black star in Fig. 7, which is located outside of the feasible

design space, then the problem constraints need to change

(yl, yu, zl, and zu need to be modified) to extend the

searchable space toward the star. This scenario could occur

if a designer highly desires a particular performance in the

product, and is willing and able to compromise some of the

constraints of the design. For example, consider a project

where a design team has been given a certain budget,

which they understand to be a constraint. The team wants

to know, however, how much more it would cost to get to a

particular performance level that they currently cannot

reach, given the monetary constraints of the budget. If the

increase in cost is fairly small for a significant increase in

performance, this may justify a request for a change in

budget, or a change in the constraints that they have been

given. In this manner, the optimization formulation itself

becomes a part of the optimization.

We present an optimization formulation with two

objective functions to explore infeasible regions of interest

as Problem 4 (P4):

min
xl;xu

f1ðxl; xu; vÞ; f2ðxl; xu; x
ð0Þ
l ; xð0Þu Þ

n o
ð10Þ

subject to the side constraints

x
ð�Þ
l;i � xl;i� x

ðþÞ
l;i fi ¼ 1; . . .; nxg ð11Þ

x
ð�Þ
u;i � xu;i� x

ðþÞ
u;i fi ¼ 1; . . .; nxg ð12Þ

and

f1ðxl; xu; vÞ ¼ min
y
kcðyÞ � vk ð13Þ

f2ðxl; xu; x
ð0Þ
l ; xð0Þu Þ ¼ kðxl � x

ð0Þ
l Þk þ kðxu � xð0Þu Þk ð14Þ

where the superscripts [](-) and [](?) indicate a lower or

upper bound on [], respectively, and the superscript [](0)

indicates that [] is from the original formulation (i.e., the

formulation that defines the feasible objective space—the

dark-shaded region in Fig. 7). The vector xl is the con-

catenation of yl and zl, or xl ¼ ½yl; zl�; likewise, xu ¼
½yu; zu�: The vector v represents a point of interest in the

current infeasible objective space, or the star in Fig. 7, and

c(y) is the set of objectives in x that correspond to

v. According to Eq. (10), the designer attempts to minimize

the Euclidean distance between c(y) and v while also

minimizing the changes made to the original optimization

formulation. This is similar but not identical to goal pro-

gramming, which can also be used in multiobjective opti-

mization situations. Goal programming seeks to discover a

particular combination of variables (satisfying predefined

constraints) that will yield a solution that minimizes the

Euclidean distance between itself and a desired point

(Charnes and Cooper 1977). Targeted boundary expansion,

on the other hand, adjusts both variables and constraints to

arrive at a formulation that minimizes the distance between

its nearest boundary and the desired point. As with most

optimization problems, proper scaling of the design objects

will produce better results; this is especially critical when

calculating f2 with Eq. (14), as a relatively small change in

one constraint could be large in comparison with another.

Suitable methods for scaling have been presented in the

following publications (Gill et al. 1981; Kasprzak and

Lewis 2001; Nha et al. 1998; Parkinson et al. 1992).

Successfully solving P4 will result in a Pareto frontier of

solutions, each of which represents an optimization for-

mulation. This frontier represents the whole tradeoff sur-

face between minimizing changes to the problem

formulation and reaching the desired point in the objective

space. In other words, this is a targeted boundary expansion

process, where the designer picks a point of interest, and

the optimization formulation that can find that point is

returned. Ultimately, the designer will discover (and be

able to select from the identified solutions) the minimum

cost to obtain a desired performance.

4 Case study: impact driver design

The purpose of this case study is to illustrate how to use the

dynamic multiobjective optimization formulation in the

three usage scenarios presented in Sect. 3 to produce

valuable design information for decision-makers during

conceptual design. Although this case study is anecdotal in

nature, it illustrates several important points: (1) By

searching the formulation space, designers are able to

Fig. 7 The original design objective space is darkly shaded, with a

feasible point shown as a circle on the interior of this space. A star

represents a design point of interest that is not feasible
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search the design space in both a divergent and convergent

manner. (2) Formulation space exploration requires the

human designer to be intimately involved in the search

process, allowing his or her judgement and rational deci-

sion-making capabilities to guide the search. (3) Using the

dynamic optimization problem formulation promotes

design exploration. The focus here is not to defend the

practicality of the design resulting from the application of

the methods presented in this paper, but rather to show how

these methods could be used in the development of a new

product.

4.1 Problem description

The case study is based upon a proposed new type of

impact driver, which is a specialized tool that applies high

torque to fasteners by the means of a hammer mechanism.

The novel aspect of this new type of impact driver is

depicted in Fig. 8. On the left side of the figure, a backpack

holding several batteries is shown. The batteries connect to

a power cord which runs from the backpack, down the

user’s arm and into a special glove with electrical contacts

embedded in the palm of the glove (shown on the right in

the figure). There are corresponding electrical contacts on

the impact driver. Thus, a complete, electrical circuit is

made when the user grabs the impact driver with the glove

on.

The goals of the design are to (1) reduce arm fatigue for

those who use the impact driver for long periods of time,

such as outdoor deck fabricators, sheetrock hangers, or

general construction workers; (2) increase the battery life

between charges (more batteries can fit in a backpack than

directly on a typical impact driver); and (3) maintain the

mobility of a cordless impact driver. For the remainder of

the case study, we will direct our attention to how a

designer might develop an impact driver to accompany the

backpack and glove—specifically, how to design a DC

motor impact driver with no battery attachment. Two dif-

ferent groups of engineering graduate students at Brigham

Young University (BYU) designed and built functional

prototypes of this novel type of impact driver. Both pro-

totypes are shown in Fig. 9. We will compare the results of

our exploration process with these designs.

We have generated five impact driver concepts that

could potentially fulfill the design specifications of this

case study, shown as Concepts 1 through 5 in Fig. 10. In

each case, we alter the geometry and product architecture,

and add or subtract drive train components to achieve the

desired goals. We assume that each concept will use the

same impact assembly, which has already been designed

Table 1 Model inputs and

outputs for the five impact

driver concepts

Type Concept 1 Concept 2 Concept 3 Concept 4 Concept 5

Model input

Drive shaft materials Discrete X X X X X

Drive shaft sizes Continuous X X X X X

Motor type Discrete X X X X X

Motor location Continuous X X X X X

Impact assembly location Continuous X X X X X

Gear material Discrete X X X X

Gear type Discrete X X X X

Counterweight location Continuous X X

Counterweight material Discrete X X

Counterweight size Continuous X X

Model output

Drive shaft locations Continuous X X X X X

Shaft stress constraint Continuous X X X X X

Total mass Continuous X X X X X

Center of mass Continuous X X X X X

Total cost Continuous X X X X X

Number of collissions Continuous X X X X X

Torque supplied Continuous X X X X X

Torque difference Continuous X X X X X

Speed supplied Continuous X X X X X

Speed difference Continuous X X X X X

Gear locations Continuous X X X X

Gear torque constraint Continuous X X X X
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and is the existing impact assembly for a 12V Hitachi

(model WH10DFL) impact driver. We now describe each

concept in greater detail:

• Concept 1—In this concept, we orient the impact

assembly (I) horizontally above the trigger assembly

(T). Two sets of bevel gears (G) connect the impact

driver to the motor (M), which is oriented horizontally

and located where batteries are typically found on most

commercially available impact drivers.

• Concept 2—This concept is similar to Concept 1;

however, the motor is oriented vertically. Only one set

of bevel gears is needed to connect the motor to the

impact assembly. Additionally, a counterweight (W) is

added to the design.

• Concept 3—In this concept, we directly attach the

motor to the impact assembly, obviating the need for

any bevel gears. The counterweight from Concept 2 is

included to help improve balance.

• Concept 4—In this concept, we orient the impact

assembly vertically, with a set of bevel gears at the

output to allow the user to drive fasteners horizontally.

A gear train consisting of four spur gears (S) connects

the impact driver to the motor, which is also oriented

vertically. The trigger assembly is located directly

above the motor.

• Concept 5—This concept is similar to Concept 4;

however, the motor is located directly below the trigger

assembly and the impact assembly. No gear train is

needed in this concept as the motor is directly in line

with the impact assembly.

We developed five separate models to analyze the

concepts. The model inputs (y) and outputs (z) are sum-

marized in Table 1. While the inputs to every model vary,

each model includes estimates for the total mass, center of

mass, total cost, torque output, speed output, and various

other outputs of interest. The total mass and cost in each

model are calculated by summing the masses and costs of

the individual components comprising each concept in

Fig. 10; the outer plastic shell that encases the impact

driver is not included. For every model, the center of mass

is calculated about the origin, which is defined as the upper

corner of the trigger assembly that faces the front of the

impact driver (see Fig. 10); this was chosen because we

assume the ideal center of mass of the impact driver to be

at that point, which is approximately true for the com-

mercially available 12V Hitachi impact driver. The torque

and speed outputs are determined with kinematic equations

for gear trains, while the stresses on the drive shafts are

calculated using accepted strength of materials equations.

Specifications for the motors, gears, shafts, and counter-

weights in the models were obtained from various online

catalogs and retailers. Gears are given three discrete

options for both material (MC901 nylon, S45C steel, and

SUS303 stainless steel) and number of teeth (20, 40, 80).

Shafts and counterweights are given discrete options for

material (S45C steel, 6061 aluminum, and ASTMB29 lead)

and continuous values for length and diameter. The impact

assembly is identical throughout, and constraints are placed

to maintain approximately identical maximum torque and

speed for the drill, so as to optimize comfort without sig-

nificantly changing performance. With models defined for

each concept, we turn our attention to formulation space

exploration.

4.2 Boundary exploration

Recall that a main goal of the design is to reduce arm

fatigue for those who use the impact driver for long periods

of time. Thus, it is reasonable to begin formulation space

exploration with the assumption that our overall objectives

for this problem are to (1) minimize the total mass of the

impact driver and (2) minimize the Euclidean distance

Contacts in
Glove

Electrical 
Cord Runs 
Down Arm

Batteries in 
Backpack

Electrical

Fig. 8 General idea for new type of impact driver. A backpack holds

several batteries, which connect to a special glove via a power cord.

The glove has electrical contacts that correspond and connect power

to an impact driver

Fig. 9 Two existing functional prototypes for new impact driver. The

left prototype corresponds to Concept 1 in the case study. The right

prototype is represented by Concept 4
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between the ideal center of mass (located at the origin of

the models) and the actual center of mass of each concept.

Nevertheless, other objectives are still unclear at this point;

it is in this scenario where boundary exploration is most

useful. We will first consider Concept 1. We formulate a

preliminary optimization problem, using the process out-

lined in Fig. 4 (with nd = 2 and nk = 1), and we explore

the boundaries for the x and y locations of the center of

mass, using the minimization of these locations to the ideal

center of mass as temporary objectives for our preliminary

problem. The result is shown in Fig. 11. From the plot, we

see that the ideal center of mass (0,0) is not possible, given

our current optimization formulation. Additionally, we see

that the x-location of the center of mass ranges from -30 to

105 mm and the y-location from -90 to -10 mm. Using

this data, we can run some worst case scenario experiments

with rudimentary, physical prototypes to determine whe-

ther the x-location or y-location has a greater effect on arm

fatigue and use this information in subsequent optimization

formulations.

4.3 Formulation modifications

Using the results from the previous section, we formulate a

new optimization problem that now includes a third

objective: minimize the x-location of the center of mass.

The projection of this new 3-dimensional design objective

space is plotted in a two-dimensional plane as the dashed

lines in Fig. 12 and labeled as k = 0 (where each different

value of k represents a new formulation or concept). The x-

axis in the figure is the total mass of the impact driver in

grams, and the y-axis is the distance to the ideal center of

mass in millimeters. An architectural layout for one design

alternative on the Pareto frontier of this formulation is

depicted on the right in the plot; the labels are the same as

those in Fig. 10. Notice that the vertical drive shaft of this

design is relatively distant from the trigger assembly. From

a design usability standpoint, we would hope that the

vertical shaft would fit inside the impact driver handle,

along with the trigger assembly. In this particular design

alternative, it is clear that in order for both components to

fit inside the handle, the handle needs to be quite large—

too large, in fact, for a hand to grip easily. Moreover, the

vertical distance between the impact assembly and the

motor is too small. In other words, this space is not prag-

matic or valid and by definition does not contribute to the

formulation space.

With what we have learned from k = 0, we reformulate

the optimization problem (k = 1) with an added objective:

to minimize the distance between the trigger assembly and

the vertical shaft. We also update the constraint on the

y-location of the motor to allow more vertical space for a

hand to grip the impact driver. The resulting design space

is shown as the region enclosed by solid lines in Fig. 12. It

is worth noting that the revision of the formulation to

produce k = 1 has apparently decreased the overall quality

of the Pareto frontier by moving it further from the origin,
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even though this new design space represents a more

usable solution in practice. This re-emphasizes the need for

keeping the designer in the loop during design activities so

that adjustments to the formulation can be made dynami-

cally that corresponds to the designer’s intuition. A design

alternative from this Pareto frontier is depicted on the

left—notice that there is no horizontal space between the

vertical drive shaft and the trigger assembly, and there is

adequate vertical space between the impact assembly and

the motor. As seen here, visualization of optimization

results is critical to effective formulation space exploration.

In this case, the architectural layouts are generated by a

concept analytical model and, while low in fidelity, provide

adequate information to decision-makers. However, visu-

alization of design alternatives is not always practical, nor

is it possible to directly and simultaneously plot formula-

tion spaces that exist in more than three dimensions.

Optimization visualization is a topic of ongoing research,

and several methods exist that could potentially facilitate

formulation space exploration (Blasco et al. 2008; Huang

and Bloebaum 2004; Jones 1996; Stump et al. 2009).

4.4 Targeted boundary expansion

Suppose that we want to learn the minimum amount of

change to our current optimization formulation (k = 1) that

would result in an objective space that contains the fol-

lowing point of interest: (mass = 600 g, distance to ideal

center of mass = 30 mm). The star in Fig. 13a represents

this point of interest. Using P4, we allow an optimization

algorithm to modify the current lower and upper bounds of

the weight of the motor, the length of the motor, the torque

output of the motor, and the shaft stresses within new

ranges that we define. These ranges are contained in

x
ð�Þ
l ; x

ðþÞ
l ; x

ð�Þ
u , and x

ðþÞ
u . Solving P4 results in a Pareto

frontier of optimization formulations, shown in Fig. 13b.

The minimum scaled distance to the point of interest is

shown on the x-axis, and the number of changes to the

original optimization formulation is on the y-axis. The

optimization formulation identified as k = 2 represents the

formulation that captured the point of interest with minimal

change to the original formulation. Using the lower and

upper bounds on x from this formulation in P2, we plot the

design objective space in Fig. 13a with medium solid lines.

As shown, this space has the point of interest on its Pareto

frontier and contains most of the previous formulation

(k = 1). Although this region is assumed to be infeasible,

we learn that the minimum change to our formulation

which would be required in order to obtain the objective

values of our point of interest comes from lowering the

upper constraint on the motor mass by 95 g and the motor

torque by 201 N-mm.

With this information, we can find a different motor for

our design that will approximate the results of the targeted

boundary expansion. In all previous designs, the motor

remained fixed. With a new motor, additional constraints in

the formulation are needed to ensure that the torque and

speed of the impact driver are appropriate. For example,

some gear train combinations would increase the speed at

the expense of the torque without preventative constraints.

However, the purpose of our optimization is to maintain

performance while increasing user comfort, so torque and

speed are kept nearly constant. The design space of our

new formulation (k = 3) is shown in thick solid lines in

Fig. 13a. While formulation k = 3 does not match the

performance of formulation k = 2 exactly, it is noticeably

better than formulation k = 1.

4.5 s-Pareto generation and concept selection

Six more formulations are created for Concept 1 and shown

in Fig. 14. As long as the designer finds each explored

region to be pragmatic and useful, the union of these

regions becomes the formulation space. Using metrics

developed in (Curtis et al. 2013), we can quantitate the

goodness of this formulation space exploration process in

terms of three aspects: novelty, preferred variety, and

quality. Novelty is a measure of how expansive our search

has been. Preferred variety indicates how well our search

has expanded in useful directions. And quality indicates

improvement in the ‘‘best’’ design as determined by an

aggregate objective function. For the formulation explo-

ration of Concept 1, we get values of 0.35, 0.11, and 0.08

for novelty, preferred variety, and quality, respectively.

Each is an indication of improvement over the baseline

design space (in this case k = 1, since k = 0 proved to be

infeasible) and provide evidence that our exploration pro-

cess has added value to our search. As described in that
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publication, these metrics can be observed throughout the

exploration process to assist the designer in determining

when the exploration process is no longer providing suf-

ficient value to be worth continued computational cost.

A similar exploration process is performed for the

remaining impact driver concepts. Only one formulation

for each concept is displayed and numbered in Fig. 15, for

the sake of readability. However, in practice, P3 can be

used to find the s-Pareto frontier of all the formulations

developed for all concepts. Three data points correspond-

ing to the physical prototypes in Fig. 9 and to the Hitachi

impact driver are also included in the plot. The asterisk

marked with C1 represents the prototype for Concept 1, the

asterisk marked with C4 represents the prototype for

Concept 4, and the asterisk marked as H represents the 12V

Hitachi impact driver. We note that since our models did

not include the mass of the plastic casing, we do not

include this in the mass of our benchmark designs in the

plot. Also, these prototypes use a different motor than the

one modeled and therefore fall outside design spaces

depicted for these concepts. In the figure, we see that

Concept 3 contains the largest portion of the s-Pareto front,

and the predicted performance is significantly better than

that of the existing prototypes. We hypothesize that if the

BYU designers would have had access to this information

that was provided by the exploration process, they would

have made different decisions and, according the models,

would likely have seen better results.

4.6 Limitations

While the results of this new framework and method of

design exploration are promising, there are several avenues

for improvement that can be made in future research. First,
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if the vision for synergistic designer/computer interaction

in early-stage design is to be realized, methods for

inputting design concepts into the computer and auto-

matically interpreting and parameterizing these concepts

need to be developed or improved. Second, the dynamic

multiobjective optimization formulation has a few limi-

tations. Using evolutionary algorithms in conjunction

with this method of exploration may prove to be com-

putationally prohibitive. Moreover, it requires design

objects to be separated into independent and dependent

objects, meaning, for example, that a dependent design

constraint cannot be implemented directly as a design

variable as the formulation currently stands. Finally, as

shown in the case study, proper visualization of optimi-

zation results can have a significant impact on formulation

space exploration. An in-depth study of existing visuali-

zation methods and their application to formulation space

exploration is warranted.

5 Concluding remarks

We have presented an optimization strategy that facili-

tates both convergence and divergence during conceptual

design. Using this strategy, a computational search is not

confined to the search space defined initially by an

optimization problem. Instead, a designer may search the

formulation space, which we have defined as the set of all

feasible design regions identified by the designer as being

pragmatic and valid, to form the solution as he or she

learns more about the design problem. We have presented

three usage scenarios for concept evaluation and selec-

tion where a designer could benefit from formulation

space exploration. We have shown how to explore for-

mulation space boundaries, generate the s-Pareto frontier

in the formulation space, and use targeted boundary

expansion to modify existing optimization formulations

and expand a search in the direction of infeasible points

of interest. We have demonstrated these scenarios on the

conceptual design of a novel impact driver. From the

results of the case study, we see that the designer can

both diverge and converge a design space using the

methods presented in this paper and make more informed

design decisions with computational assistance earlier in

the design process.
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